MA8551 Algebra and Number Theory Syllabus:
MA8551 Algebra and Number Theory Syllabus โ Anna University Regulation 2017
OBJECTIVES:
- To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.
- To introduce and apply the concepts of rings, finite fields and polynomials.
- To understand the basic concepts in number theory
- To examine the key questions in the Theory of Numbers.
- To give an integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.
UNIT I GROUPS AND RINGS
Groups : Definition โ Properties โ Homomorphism โ Isomorphism โ Cyclic groups โ Cosets โ Lagrangeโs theorem. Rings: Definition โ Sub rings โ Integral domain โ Field โ Integer modulo n โ Ring homomorphism.
UNIT II FINITE FIELDS AND POLYNOMIALS
Rings โ Polynomial rings โ Irreducible polynomials over finite fields โ Factorization of polynomials over finite fields.
UNIT III Rings โ Polynomial rings โ Irreducible polynomials over finite fields โ Factorization of polynomials over finite fields.
Division algorithm โ Base โ b representations โ Number patterns โ Prime and composite numbers โ GCD โ Euclidean algorithm โ Fundamental theorem of arithmetic โ LCM.
UNIT IV DIOPHANTINE EQUATIONS AND CONGRUENCES
Linear Diophantine equations โ Congruenceโs โ Linear Congruenceโs โ Applications: Divisibility tests โ Modular exponentiation-Chinese remainder theorem โ 2 x 2 linear systems.
UNIT V CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS
Wilsonโs theorem โ Fermatโs little theorem โ Eulerโs theorem โ Eulerโs Phi functions โ Tau and Sigma functions.
TEXT BOOKS:
1. Grimaldi, R.P and Ramana, B.V., โDiscrete and Combinatorial Mathematicsโ, Pearson Education, 5th Edition, New Delhi, 2007.
2. Koshy, T., โElementary Number Theory with Applicationsโ, Elsevier Publications, New Delhi, 2002.
REFERENCES:
1. Lidl, R. and Pitz, G, โApplied Abstract Algebraโ, Springer Verlag, New Delhi, 2nd Edition, 2006.
2. Niven, I., Zuckerman.H.S., and Montgomery, H.L., โAn Introduction to Theory of Numbersโ, John Wiley and Sons , Singapore, 2004.
3. San Ling and Chaoping Xing, โCoding Theory โ A first Courseโ, Cambridge Publications, Cambridge, 2004.